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RADIATION FROM
A UNIFORMLY ROTATING CHARGE DISTRIBUTION
IN A PLASMA IN A MAGNETIC FIELD

by

- *
Stanley Gianzero

- INTRODUCTION

5

" The problem of energy radiated in a plasma from a uniformly
rotating charge distribution is of importance in connection with the
génera:tion of high power microwave radiation. The dispersion properties
of the pl.a.sm; in a magnetic field may be used to confine the radiation
‘either in the fundamental frequency of rotation of the charge or in a
higher harmonic, in which case this radiation mechanism can be used
as a frequency multiplier. A simple scheme for the plasma and the

charge distribution is used in the present analysis to discuss. the

fundamental properties of the radiated spectrum, /4d M{) w
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THEORETICAL ANALYSIS

This theoretical research has been devoted to the analysis of
the spectrum of electromagnetic energy radiated by an electric charge
which rotates at uniform velocity in a plasma. It is well known that
a point charge rotating in a vacuum radiates a spectrum of lines which
correspond to the harmonics of the angular frequency of motion. For
nonrelativistic velocities of the charge the radiated energy is confined
to the first few lines of the spectrum. For highly relativistic velocities
the spectral distribution of the radiated energy increases first with the
order of the harmonic, reaches a maximum and decreases thereafter.

A different behavior has to be expected if the charge rotates in
a plasma in a constant magnetic field. In this case the medium is highly
dispersive and a resonant situation has to be expected where the dom-
inant part of the radiated energy should be confined to a particular har-
monic of the angular frequency of the rotating charge.

In the present analysis a linear uniform distribution of electric
charge has been considered parallel to the axis z of a cylindrical system
of coordinates 1, @, z. The charge distribution rotates about the
z axis with a constant angular velocity W, 3 and 9o0 To denote the charge
per unit length and fhe radius of the orbit respectively. In the frame
of reference r, o, z, the components of the electric current density 5' :
associated with the charge motion are

W, ~imw,T

4+
9,
- 5(r-r,) Z e (1)
m= -co

L=3=0 =




where b(r-ro) is the Dirac §-function and T is related to the times t ahd

the angular position ¢:

'[‘.::t-i (Z)

The charge distribution rotates in a uniform plasma in the presence of

a uniform and constant magnetic field parallel to the x axis. An ideal
plasma is considered where electron collisions are neglected. Assuming ‘
that the angular frequency w is suff1ciently large, the ion motion may be
neglected. The current density j induces in the plasma an electron
motion with components u.,s u and an electromagnetic field with finite

o
components E E. E of the electric field and the component Hz of the

o
magnetic field. Furthermore the intensity of the electromagnetic field is

[0

assumed to be small, such that the equations of motion of the electrons
may be linearized. Thus the governing momentum and Maxwell equations

in the plasma reduce to
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where q, m are the electron charge and mass respectively; n, wc are
the electron density and the electron cyclotron frequency; ¢ o* My 2are
the dielectric and magnetic permeabilities of a vacuum. With the
exclusion of the electron pressure term in the monientum equa.tio.ns, the
excitation of longitudinal modes in the plasma is not included in the
present analysis. | |

A particular solution of system (3), which is consistent‘with the
current density (1) is of the form:

+o ~imw T

Y(r,op,t) = Z Y (r)e : (4)

m= «-Qo

where Y stands for each component of the electron velocity and electro-
magnetic field. In particular, Erm and qum are given in terms of H,

by the equations
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where c=(g_u ) 2 is the speed of light in a vacuum, The solutions of

Eti. (8) are
mw_x_ T
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where Jm > Hr(r:) are the Benel and Hankel functions respectively. a;n’

agm 2%¢ the integration constants to be determined with the boundary

conditions at r= T,. The boundary conditions at r= r are
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where tae superscripts i, e indicatc _.« “ield components in the regions

r<r and r>r° respectively. The boundary conditiorns (10) yield
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To obtain the power radiated by the charge distribution per axit
length, one can compute the flux of the Poynting vector across a cylinder

of unit length and radius r>r, coaxial with the z axis. One obtains

2n
W= rE°®H®%dp=
cp z

o

2
_ 1 3 m Ye .
- —2;: Yol Z 5 [Ber'zx(mBm)+ 2 aP 2_w? Jm(msm)]a
X p

mw m
m o wo




where the sum is extended to the positive values of m for which %n is a

real quantity, and

Pm = ¢ *m -4

Bm is the ratio of the charge velocity wr to the phase velocity ¢/ L . of
a plane electromagnetic wave of frequency m wo/ 271 which propagates
perpendicular to the magnetic field.

The radiated energy (13) depends strongly upon the dispersion
property of the plasma which is defined by the index of refraction

For an arbitrary value ®W/21 of the frequency of the electromagnetic

field, the index of refraction x is given by
3 v 1
el e us)
3
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In Fig. 1, »® is plotted versus the ratio x=u w, for a given value of the

parameter g=u P/ wc . The singularities are found at

x=0, x=J14®@ (16)

and x vanishes at

£y an

Furthermore % is larger than one in the range

a<x<l+ca® (18)



and y is imaginary in the ranges

0<x< / %-l—aa -% » Al+a® <x< /i-‘l»as +-% (19)

Thus energy cannot be radiated in the ranges of frequency which,
satisfy conditions (19).. On the other hand, a harmonic of the a.hgular
frequency w, may be found in the range (18) and it is possible to select a
velocity w of the rotating chargé distribution such that

By > 1 ' (20)

Condition (20) means that the charge distribution rotates at a velogity
w r_ which is larger than the phase velocity of the mth harmonic of the
radiated field. When this condition is satisfied the Cerenkov radiation
process contributes to the energy radiated in the mth harmonic.

Assume for instance that the charge distribution rotates at the
electron cyclotron frequency (wo=wc)’., One observes that the frequency

range where x >1 satisfies the condition

S+ - a<l (21)

Thus one harmonic alone can be found in the range (18). Two
different situations can be found depending upon the ratio = wp/ We.
Congider fir;t the case g<1l. Condition (20) cat/1 be satisfied for the
first harmonic only (m=1). The energy radiated in the first line of the

spectrum is
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It is worthwhile pointing out that for m=1, W =w,_ the index of refraction

x is

%y = 20 - (23)

Therefore the condition gy >1 can be achieved only if the charge distri-
bution rotates at relativistic velocities. A different situation is found

when a>1, In particular, if g satisfies the coﬁdition

a>J2 (24)

by virtue of (19) the lowest harmonics

m < /%+ag -

cannot be radiated. Again, one harmonic may be found in the range (18)

(25)

o]

where the radiation can be particularly strong provided condition (20) is
satisfied. Nevertheless one observes that for large values of g the

range (18) becomes

V142 -a“-zl-a

~

i.e., it decreases as g increases. Hence a situation Bm>1 for m>>1

becomes too critical to be of any practical interest.




In both cases ¢ 2 1, for large values of m one has

Thus for nonrelativistic velocities the energy radiated in the higher

harmonics of the spectrum decreases rapidly as m increases.
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CONCLUDING REMARKS 77’;“-\\.

The charge distribution, rotating at the cyclotron frequency,

produces a strong radiation at the harmonic where condition (20) is
satisfied. For relativistic velocities, condition (20) may be achieved
at the fundamental harmonic (m=1) provided the plasma frequency

mp is amaller than the electron frequency W, Conversely, when wp
is large compared to W, the lower harmonics are suppressed and the
main part of the radiated spectrum is confined to the harmonic of the

order m ™ wp/ w_. . ‘ T
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